Two New Heliococcus Species, a Key to the North American Species, and a List of World Species.

(Homoptera: Coccoidea: Pseudococcidae)

Douglass R. Miller

Systematic Entomology Laboratory, IIBIII, USDA, ARS, Beltsville, Maryland 20705

In this paper two new species of *Heliococcus* are described for inclusion in a study on the mealybugs of San Clemente Island. Because no comprehensive work has been published on *Heliococcus*, a diagnosis of generic characters and a list of known species are given.

Heliococcus Sulc, 1912.

Type species.—Heliococcus bohemicus Sulc, 1912, by monotypy.

Diagnosis.—Adult female: anal lobes large, strongly protruding, normally sclerotized; ventral-lobe sclerotization normally elongate and conspicuous; 2–18, normally 17 or 18, pairs of cerarii; 2 or 3 conical setae in each cerarius; multi-locular pores, when present, ventral only (except on H. phaseoli), normally restricted to areas near vulva, sometimes absent; quinquelocular pores restricted to venter (except on H. dorsiporosus), confined to medial and mediolateral areas; trilocular pores present in all areas except medial and mediolateral areas of venter; small discoidal pores sparce on both surfaces; crateriform tubular ducts present; oral-collar tubular ducts normally present, restricted to venter; anal ring with 3 pairs of setae and 3–5 rows of pores; dorsal and ventrolateral setae normally conical; circulus normally present; hind legs with or without translucent pores; tarsal digitules not apically capitate; claws each with large denticle; claw digitules capitate; antennae normally 9-segmented; with 2 pairs of ostioles.

Notes.—Heliococcus is most closely related to Saliococcus Kanda and Takahashicoccus Kanda in that all three genera possess the characteristic crateriform tubular ducts. Saliococcus and Takahashicoccus differ from Heliococcus in possessing cerarii which each contain more than 3 conical setae. In Heliococcus all but the ocular cerarii contain less than 4 conical setae.

LIST OF WORLD SPECIES OF HELIOCOCCUS

Except for one questionably placed Ethiopian species, *H. phaseoli*, *Heliococcus* is exclusively Holarctic. The following list has been compiled from the literature and includes 39 species and subspecies, eight from the New World and 31 from the Old World.

THE PAN-PACIFIC ENTOMOLOGIST 50: 177-192. APRIL 1974

- 1. adenostomae McKenzie, 1960: 707 (California)
- 2. artemisiae Ter-Gigorian, 1967: 134 (Armenian SSR)
- 3. atraphaxidis Bazarov, 1963: 38 (Tadzhik SSR)
- 4. atriplicis McKenzie, 1964: 235 (California)
- 5. bambusae (Takahashi) (Taiwan)

Phenacoccus bambusae Takahashi, 1930: 6

Heliococcus bambusae (Takahashi), Goux, 1934: 171

- 6. bohemicus Sulc, 1912: 39 ("Bohemia"; France; Germany; USSR)
- 7. caucasicus Borchsenius, 1949: 279 (Armenian SSR)
- 8. cinereus Goux, 1934: 164 (France)
- 9. clemente Miller, new species (California)
- 10. cydoniae Borchsenius, 1949: 272 (USSR)
- 11. deserticola Miller, new species (Mexico; Arizona, California, Nevada, New Mexico, Texas)
- 12. destructor Borchsenius, 1941: 6 (Kirgiz SSR, Kazakh SSR, Tadzhik SSR, Turkmen SSR, Uzbek SSR)
- dorsiporosus Danzig, 1971: 382 (Eastern USSR)
 (It is questionable that this species belongs in Heliococcus because it has dorsal quinquelocular pores.)
- 14. glycinicola Borchsenius, 1956: 678 (Korea)
- 15. halocnemi Borchsenius, 1949: 277 (Uzbek SSR)
- 16. herbaceus Borchsenius, 1956: 678 (Korea)
- 17. insignis (Lobdell) (Kansas, Louisiana, Mississippi)

 Phenacoccus insignis Lobdell, 1930: 210

Heliococcus insignis (Lobdell), Ferris, 1950: 97

- 18. kehejanae Ter-Grigorian, 1967: 136 (Armenian SSR)
- 19. kurilensis Danzig, 1971: 386 (Eastern USSR)
- 20. marginalis Goux, 1953: 104 (France)
- 21. maritimus Danzig, 1971: 388 (Eastern USSR)
- 22. minutus (Green) (Channel Island of Guernsey, England)

Phenacoccus minutus Green, 1925: 519

Heliococcus minutus (Green), Williams, 1962: 29

- 23. montanus Borchsenius, 1949: 274 (Tadzhik SSR, Uzbek SSR)
- 24. nivearum Balachowsky, 1953: 238 (France; USSR)
- 25. nivearum austriacus Balachowsky, 1953: 240 (Austria)
- 26. oligadenatus Danzig, 1972: 333 (Mongolian Republic)
- 27. osborni (Sanders) (Canada; Colorado (?), Indiana, Iowa, Louisiana, Missouri, New York, Ohio, Virginia; Egypt (?))

 Phenacoccus (Paroudablis) osborni Sanders, 1902: 284

Phenacoccus pettiti Hollinger, 1917: 281

Heliococcus osborni (Sanders), Ferris, 1950: 99

- 28. pavlovskii Borchsenius and Tereznikova, 1959: 491 (Maritime Territory, USSR)
- 29. phaseoli (Laing) (Sierra Leone)

Phenacoccus phaseoli Laing, 1929: 475

Heliococcus phaseoli (Laing), Goux, 1934: 171

(Based on the large number of dorsal multilocular pores, it is possible that phaseoli does not belong in Heliococcus.)

30. radicicola Goux, 1931: 113 (France; Germany; Poland; Sweden; Crimea)

- 31. salviae Borchsenius, 1949: 282 (Tadzhik SSR)
- 32. saxatilis Borchsenius, 1949: 276 (Armenian SSR)
- 33. Slavonicus Borchsenius and Tereznikova, 1959: 492 (Ukrainian SSR)
- 34. stachyos (Ehrhorn) (California)

Phenacoccus stachyos Ehrhorn, 1900: 313

Heliococcus stachyos (Ehrhorn), Goux, 1934: 171

- 35. sulcii Goux, 1934: 167 (France; Germany; Ukrainian SSR)
- 36. szetshuanensis Borchsenius, 1962: 232 (China)
- 37. tesquorum Borchsenius, 1949: 284 (Kazakh SSR)
- 38. wheeleri (King) (Texas)

Dactylopius wheeleri King, 1902: 285

Pseudococcus wheeleri (King), MacGillivray, 1921: 133

Heliococcus wheeleri (King), Ferris, 1953: 363

(Described from immatures. The identity of this species is uncertain.

Ferris (1953) believed that it might be a senior synonym of insignis.)

39. zizyphi Borchsenius 1958: 161 (China)

LIST OF SPECIES ERRONEOUSLY PLACED IN HELIOCOCCUS

1. hystrix (Baerensprung) = Phenacoccus hystrix (Baerensprung)

Coccus hystrix Baerensprung, 1849: 174

Phenacoccus hystrix (Baerensprung), Lindinger, 1912: 293

Heliococcus hystrix (Baerensprung), Thiem, 1930: 140

2. malvastrus McDaniel = Ferrisia virgata (Cockerell)

Heliococcus malvastrus McDaniel, 1962: 323; McKenzie, 1967: 181

3. multipori Takahashi

Heliococcus multipori Takahashi, 1951: 18

(This species does not belong in *Heliococcus* because it lacks crateriform tubular ducts. It probably should be placed in *Phenacoccus*, but without specimens I cannot be positive.)

4. sakai Takahashi

Heliococcus sakai Takahashi, 1951:16

(This species does not belong in *Heliococcus* because it lacks crateriform tubular ducts. It probably should be placed in *Phenacoccus*, but without specimens I cannot be positive.)

5. takae (Kuwana) = Saliococcus takae (Kuwana)

Dactylopius takae Kuwana, 1907: 184

Phenacoccus takae (Kuwana), Kuwana, 1917: 6

Saliococcus takae (Kuwana), Kanda, 1934: 309

Heliococcus takae (Kuwana), Kanda, 1935: 70

(In 1934 Kanda chose takae to be the type species of Saliococcus Kanda. In 1935 he stated that Saliococcus was a junior, subjective synonym of Heliococcus and placed takae in that genus. The description of Saliococcus tokyoensis (1959a) indicates that he changed his mind about the status of Saliococcus. The presence of cerarii with more than 3 conical setae easily distinguishes Saliococcus from Heliococcus.)

6. takahashii Kanda = Takahashicoccus takahashii (Kanda)

Heliococcus takahashii Kanda, 1935: 73

Takahashicoccus takahashii (Kanda), Kanda 1959b: 239

7. wilmattae (Cockerell) = Phenacoccus wilmattae Cockerell
Phenacoccus wilmattae Cockerell, 1901: 57
Heliococcus wilmattae (Cockerell), Goux, 1934:171
(This species was placed in Heliococcus because of a misidentification of wilmattae by Bueker (1930).)

Key to Adult Females of North American Species of Heliococcus¹

1.	With 15 or more pairs of cerarii 3
	With less than 10 pairs of cerarii2
2(1).	Large-sized crateriform tubular ducts surrounded by cluster of small-
	sized ducts; multilocular disk pores absent clemente Miller, n. sp.
	Large-sized crateriform tubular ducts without cluster of small-sized ducts;
	multilocular disk pores present near vulva atriplicis McKenzie
3(1).	Crateriform tubular ducts of at least 2 sizes5
	Crateriform tubular ducts generally of 1 size, occasionally with 1 or 2 smaller ducts in dorsomedial areas of abdomen 4
4(3).	Venter with multilocular disk pores and oral-collar tubular ducts; with
	at least 10 trilocular pores associated with each cerarius insignis (Lobdell)
	Venter without multilocular disk pores and oral-collar tubular ducts;
	with 5 or fewer trilocular pores associated with each cerarius
	adenostomae McKenzie
5(3).	Large-sized crateriform tubular ducts without associated smaller ducts;
	multilocular disk pores normally present6
	Large-sized crateriform tubular ducts along body margin with as-
	sociated clusters of smaller ducts; mutilocular disk pores ab-
	sent deserticola Miller, n. sp.
6(5).	Small-sized crateriform tubular ducts much more abundant than large-
	sized ducts; normally with a cluster of oral-collar tubular ducts near
	anterolateral margins of abdominal segment IX; oral-collar tubular ducts
	normally present on venter of abdominal segments VIII-V or
	IVosborni (Sanders)
	Small-sized crateriform tubular ducts less abundant or equal in number
	to large-sized ducts; without a cluster of oral-collar tubular ducts on
	abdominal segment IX; oral-collar tubular ducts normally restricted
	to abdominal segments IX or VIII, rarely on VII stachyos (Ehrhorn)

Heliococcus clemente, new species

(Fig. 1)

Suggested common name.—San Clemente mealybug.

Type material.—Holotype adult female, Pyramid Head, San Clemente Island, Los Angeles County, California, 12 May 1973, collected under rock, D. R. Miller and A. S. Menke (USNM).

Adult female.—Holotype, mounted, 2.9 mm long, 1.8 mm wide. Body oval; anal lobes strongly protruding and sclerotized, with 3 large-sized crateriform ducts on each lobe.

¹ H. wheeleri is not included because adult females are not available.

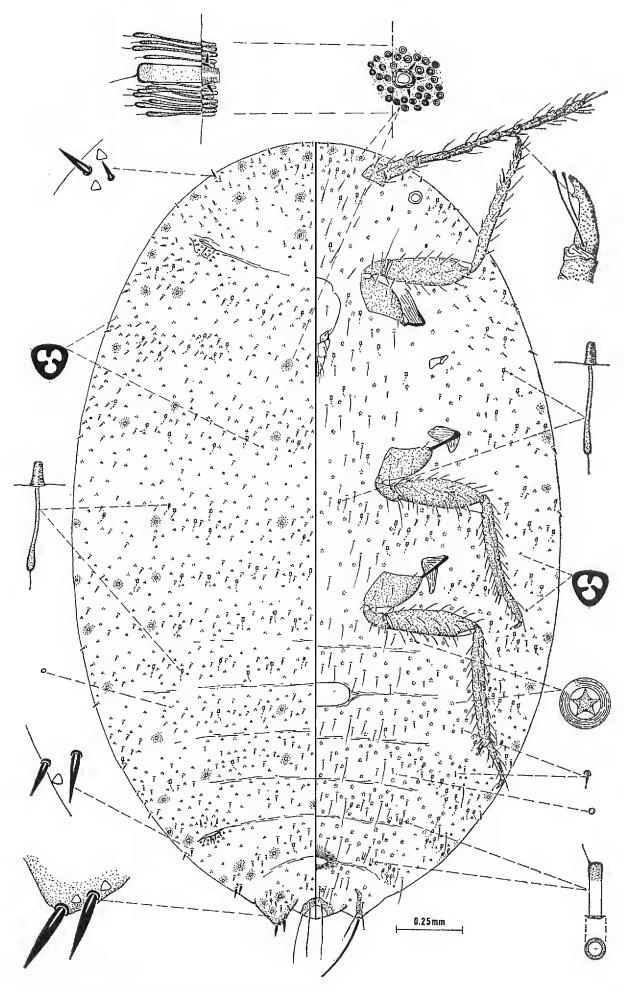


Fig. 1. Heliococcus clemente, adult female.

Dorsum with 3 pairs of cerarii on abdomen, 1 pair on head. Anal-lobe cerarii each with 2 elongate, conical setae, 2 or 3 trilocular pores, and large area of basal sclerotization. Remaining abdominal cerarii with progressively smaller conical setae, with or without trilocular pores, without basal sclerotization. Ocular cerarii each with 1 large and 1 small conical seta, 1 or 2 associated trilocular pores, no basal sclerotization. Multilocular disk pores and quinquelocular pores absent. Trilocular pores scattered over surface. Discoidal pores present, few. Crateriform tubular ducts of 2 sizes: larger size scattered over surface, with 1–4 setae at base of each sclerotized crater, surrounded by 13–35 (av. 25) small-sized ducts; smaller size present in clusters around larger ducts and singly in medial, mediolateral, and rarely lateral areas; small-sized crateriform ducts without associated setae. Body setae conical.

Anal ring bent over apex of abdomen, with 4 or 5 rows of pores; each of 6 anal-ring setae noticeably longer than greatest diameter of ring.

Venter with anal-lobe sclerotization elongate. Multilocular disk pores absent. Quinquelocular pores abundant in medial and mediolateral areas, absent elsewhere. Trilocular pores present in mediolateral and lateral areas. Discoidal pores present in small numbers. Crateriform tubular ducts of same sizes as on dorsum, clusters composed of 1 large- and many small-sized ducts, clusters restricted to near body margins; small-sized ducts lightly scattered over surface, least abundant on medial areas of abdomen. Oral-collar tubular ducts with conspicuous, sclerotized dermal opening, restricted to mediolateral areas of abdominal segments VIII and VII. Body setae of 2 kinds: bristle-shaped setae present medially and laterally; conical setae present mediolaterally and laterally.

Circulus present. Legs with small translucent pores on dorsal surface of hind tibiae; hind tibia/tarsus ratio 1:3.1 and 1:3.2; hind tibia + tarsus length 604 and 616 μ ; claws with large denticle. Antennae 9-segmented, 823 and 854 μ long.

North America because of the large clusters of crateriform tubular ducts. It is most closely related to *H. deserticola*, herein described as new. *H. clemente* is also similar to *H. atriplicis* McKenzie in that both species have less than 15 pairs of cerarii. *H. atriplicis* differs in lacking crateriform tubular-duct clusters and in having a few multilocular disk pores around the vulva. *H. clemente* has many crateriform tubular-duct clusters and lacks multilocular disk pores.

H. cydoniae. Both species possess large clusters of crateriform tubular ducts and have small-sized crateriform ducts that lack associated setae. They can be readily separated as follows. H. cydoniae has multilocular disk pores surrounding the vulva, translucent pores on the hind coxae, no pores on the hind tibiae, and 18 pairs of cerarii. H. clemente has no multilocular disk pores, no translucent pores on the hind coxae, pores present on the hind tibiae, and no more than 4 pairs of cerarii.

Heliococcus deserticola, new species (Fig. 2-5)

Suggested common name.—Desert crateriform mealybug.

Type material.—Holotype adult female, 10 mi. N. Alamo, Lincoln County, NEVADA, 5 July 1970, on Ambrosia dumosa (Compositae), D. R. Miller, (USNM). Paratypes are as follows: Arizona: Welton, Yuma County, 27 March 1940, on Encelia farinosa (Compositae), R. C. Dickson. California: Niland, Imperial County, 19 March 1971, on Ambrosia dumosa, R. D. Goeden and D. W. Ricker; Picacho Peak, Imperial County, 14 December 1970 and 13 April 1971, on Ambrosia ilicifolia, R. D. Goeden and D. W. Ricker; 3 mi. N. Shoshone, Inyo County, 12 June 1963, on Encelia frutescens and Eriogonum foliolosum (Polygonaceae), D. R. Miller; Palm Desert, Riverside County, 28 April 1971, beaten from Ambrosia dumosa, R. D. Goeden and D. W. Ricker; Palm Springs, Riverside County, 29 April 1971, beaten from Ambrosia dumosa, R. D. Goeden and D. W. Ricker; Morongo Valley, San Bernardino County, 9 June 1963, on Baccharis sp. (Compositae), D. R. Miller; Twenty-nine Palms, San Bernardino County, 25 March 1970, 20 May 1970, 20 May 1971, Ambrosia dumosa, R. D. Goeden and D. W. Ricker; Yucca Valley, San Bernardino County, 20 May 1970, Ambrosia dumosa, R. D. Goeden and D. W. Ricker. Nevada: same data as for holotype. Texas: Presidio, Presidio County, 17 May 1951, on Viguiera stenoloba (Compositae), J. H. Russell. Mexico: 10 mi. W. Zacapu, Michoacán, 6 March 1972, under rock, D. R. Miller and F. D. Parker.

The 33 paratypes will be placed in the following collections: British Museum (Natural History), London; California Department of Agriculture, Sacramento; Florida State Collection of Arthropods, Gainesville; Muséum National D'Histoire Naturelle, Paris, France; Mexican National Collection, Mexico City; University of California, Davis; University of California, Riverside; University of Hawaii, Honolulu; U. S. National Museum (Natural History), Beltsville, Maryland; Virginia Polytechnic Institute and State University, Blacksburg; Zoological Institute, Academy of Sciences, Leningrad, USSR.

Adult female (Fig. 2).—Holotype, mounted, 2.6 mm long (paratypes 2.1–3.8), 1.8 mm wide (paratypes 1.2–2.7). Body oval, anal lobes strongly protruding and heavily sclerotized, with 3 large-sized crateriform tubular ducts on each lobe (paratypes with 3–5, av. 3.5).

Dorsum with 17 pairs of cerarii. Anal-lobe cerarii each with 2 elongate, conical setae, 4 or 5 trilocular pores, and large area of sclerotization. Remaining cerarii each with 2 somewhat smaller conical setae, 2–4 trilocular pores, and little or no basal sclerotization; ocular cerarii each with 3 conical setae. Multilocular disk pores and quinquelocular pores absent. Trilocular pores abundant. Discoidal pores sparce. Crateriform tubular ducts of 3 sizes: large-sized ducts scattered over surface, most abundant near body margin, with 2–5 associated setae, marginal ducts sometimes surrounded by cluster of 4–11 (av. 7) small-sized crateriform tubular ducts; medium-sized ducts present in medial and mediolateral areas, with 1 or 2 associated setae; small-sized ducts in clusters associated with larger ducts only, normally without associated setae. Body setae conical.

Anal-ring apical, bent over apex of abdomen, with 3 or 4 rows of pores; each of 6 anal-ring setae noticeably longer than greatest diameter of ring.

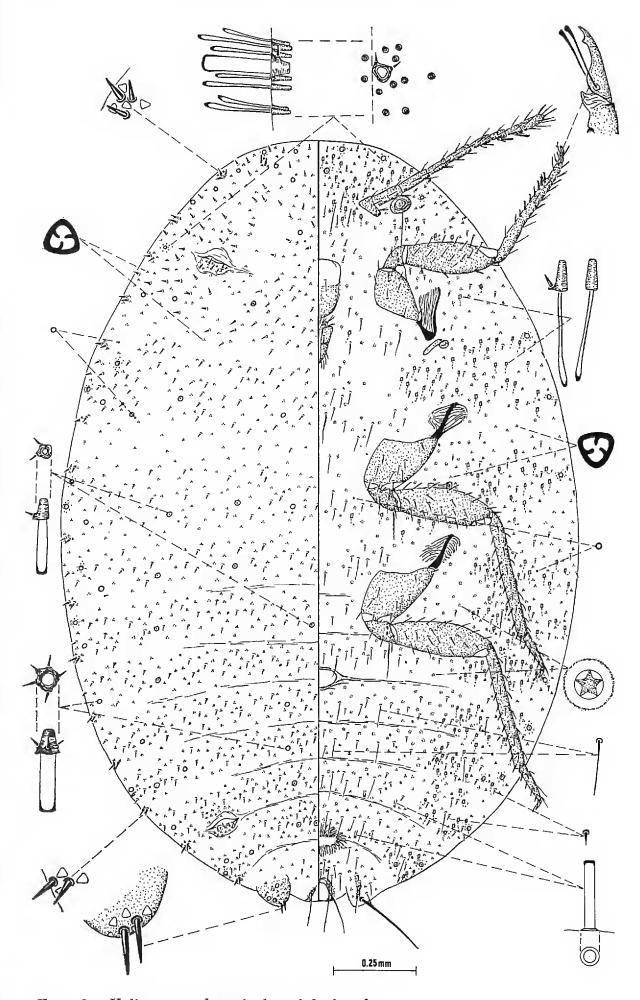


Fig. 2. Heliococcus deserticola, adult female.

Venter with conspicuous, elongate anal-lobe sclerotization. Multilocular disk porcs absent. Quinquelocular pores present on medial and mediolateral areas. Trilocular pores present in mediolateral and lateral areas, and in medial areas of abdominal segments X-VI. Discoidal pores sparce. Crateriform tubular ducts of 2 sizes, same as larger and smaller sizes on dorsum: larger size always with associated cluster of small-sized ducts, restricted to lateral areas, with 2–6 associated setae; smaller size present in mediolateral and lateral areas, sometimes in clusters around larger ducts, normally without associated setae. Oral-collar tubular ducts with small dermal rim, restricted to mediolateral areas of abdominal segments VIII and VII. Body setae of 2 kinds: bristle-shaped setae present medially and laterally; conical setae present mediolaterally and laterally.

Circulus present. Legs with very small translucent pores restricted to dorsal surface of hind tibiae; hind tibia/tarsus ratio 1:3.2 and 1:3.3 (paratypes 1:3.3–1:3.6, av. 1:3.5); hind tibia + tarsus length 573 and 567 μ (paratypes 573–763 μ , av. 671); claws each with denticle. Antennae 9-segmented, 713 and 732 μ long (paratypes 683–946 μ , av. 836).

Variation.—Paratypes differ from holotype as follows: with 15 to 18 pairs of cerarii, normally with 18, with 2-4 setae, normally 2, in each ocular cerarius, sometimes with crateriform tubular-duct clusters more numerous along margin of dorsum, sometimes with small-sized crateriform ducts sparcely scattered over dorsal surface, occasionally with 1 associated seta, with 2-16 (av. 7) smaller ducts in clusters around larger ducts, with variable numbers of crateriform tubular-duct clusters along body margin, sometimes with ventromedial trilocular pores restricted to posterior 3 abdominal segments, without oral-collar tubular ducts on 1 specimen.

Notes.—The above description is based on 16 specimens from 8 localities.

H. deserticola is most closely related to H. clemente but differs in possessing 15–18 pairs of cerarii, crateriform tubular-duct clusters which are restricted to the body margin, crateriform clusters which are composed of 2–16 (av. 7) small-sized ducts, setae associated with some small-sized crateriform ducts, 3 sizes of crateriform ducts. H. clemente has 3 pairs of cerarii, crateriform tubular-duct clusters which are scattered over the dorsum, crateriform clusters which are composed of 13–35 (av. 25) small-sized ducts, no setae associated with the small-sized ducts, and 2 sizes of crateriform ducts.

H. deserticola has been confused with H. stachyos. These species can be separated as follows: H. stachyos normally has multilocular disk pores near the vulva and lacks clusters of crateriform tubular ducts; H. deserticola lacks multilocular pores and has clusters of crateriform tubular ducts.

H. deserticola shows a remarkable resemblance to the Russian species H. kurilensis in that both have clusters of small-sized crateriform tubular ducts surrounding a single larger duct. Unlike H. clemente and H.

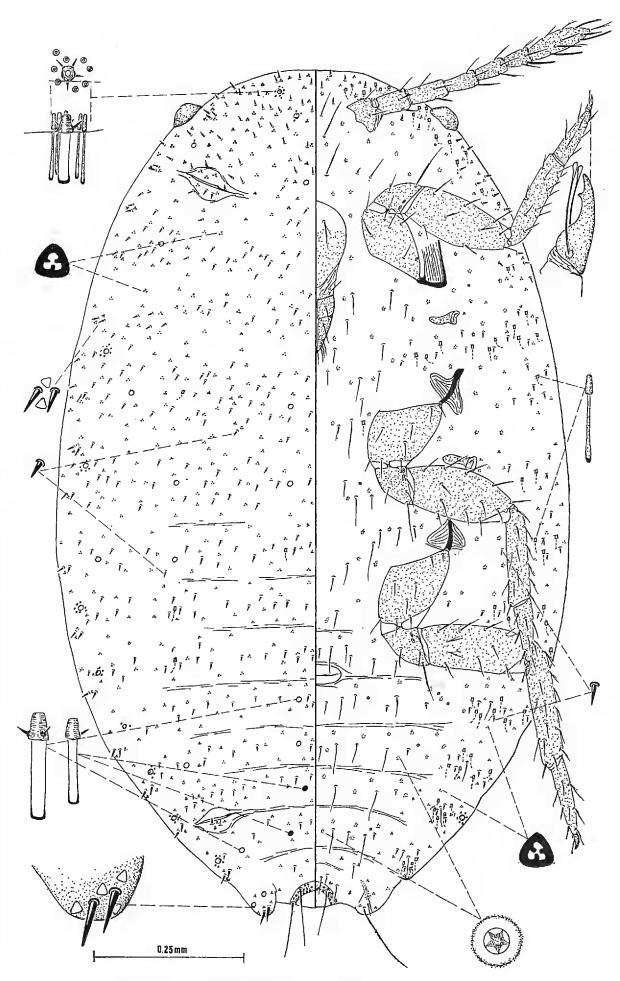


Fig. 3. Heliococcus deserticola, third instar female.

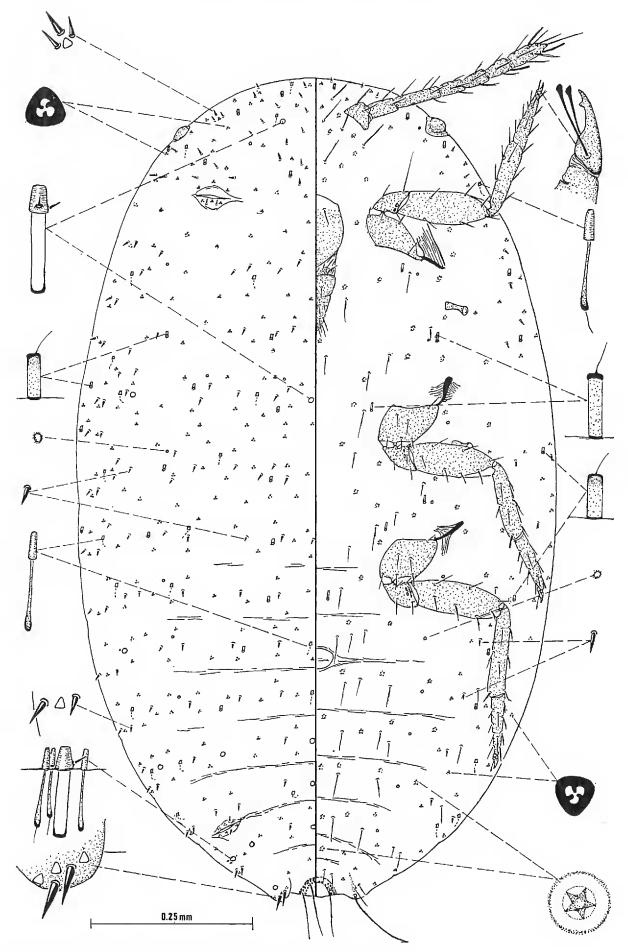


Fig. 4. Heliococcus deserticola, second instar male.

cydoniae, H. deserticola and H. kurilensis have only small clusters of these ducts. H. kurilensis differs from H. deserticola in having the crateriform clusters scattered over the entire dorsum and in having multilocular disk pores near the vulva; H. deserticola has the crateriform clusters restricted to the marginal areas and has no multilocular disk pores.

Third instar female (Fig. 3).—Same as for adult female except as follows: mounted, 1.4–2.1 mm long, 0.9–1.3 mm wide. Anal lobes each with 2 large-sized crateriform tubular ducts.

Dorsum with 18 pairs of cerarii. Anal-lobe cerarii each with 2-5 trilocular pores. Discoidal pores absent or sparce. Crateriform tubular ducts of 3 sizes: larger size with marginal ducts sometimes with 2-10 (av. 5.1) associated smaller-sized crateriform tubular ducts; medium-sized ducts present in medial areas of some posterior abdominal segments; small-sized ducts associated with larger ducts and scattered in small numbers in mediolateral and lateral areas.

Venter with crateriform tubular ducts of 2 sizes: larger size present on margin of abdominal segment VII, surrounded by cluster of small-sized ducts. Oral-collar tubular ducts absent.

Legs without translucent pores; hind tibia/tarsus ratio 1:1.7-1:1.8 (av. 1:1.8); hind tibia + tarsus length 311-415 (av. 366) μ . Antennae 7- or 8-segmented, 421–519 (av. 458) μ long.

Notes.—The above description is based on 2 specimens from 2 localities.

Second instar male (Fig. 4).—Same as for adult female except as follows: mounted 1.1 mm long, 0.7 mm wide. Anal lobes each with 1 large-sized crateriform tubular duct.

Dorsum with 17 pairs of cerarii. Anal-lobe cerarii each with 2 or 3 trilocular pores. Remaining cerarii sometimes indefinite, with widely separated cerarian setae. Crateriform tubular ducts of 2 sizes: large-sized ducts in small numbers over surface, with 1–4 associated setae, marginal ducts occasionally with 1–3 associated small-sized ducts; small-sized ducts scattered over surface. Oral-collar tubular ducts of 2 sizes: shorter ducts restricted to lateral areas of anterior abdominal segments, thorax, and head, of same size and shape as those on dorsum; longer ducts present medially near legs.

Legs without translucent pores; hind tibia/tarsus ratio 1:1.4; hind tibia + tarsus length 226 μ . Antennae 7-segmented, 317 μ long.

Notes.—The above description is based on 1 specimen.

First instar (Fig. 5; Sexes not distinguished).—Same as for adult female except as follows: mounted, 0.5 mm long, 0.2-0.3 mm wide. Anal lobes lightly sclerotized, without crateriform tubular ducts.

Dorsum with 16–18 indefinite cerarii. Anal-lobe cerarii each with 1 trilocular pore. Remaining cerarii with 1 associated trilocular pore of same size and shape as other triloculars; ocular cerarii normally absent, when present, with 2 conical setae. Trilocular pores scattered over surface, arranged in 4 or 5 pairs of longitudinal lines on abdomen. Discoidal pores and crateriform tubular ducts absent. Body setae arranged in 4 pairs of longitudinal lines on abdomen and head, median lines sometimes with additional row on thorax.

Anal ring with 2 rows of pores.

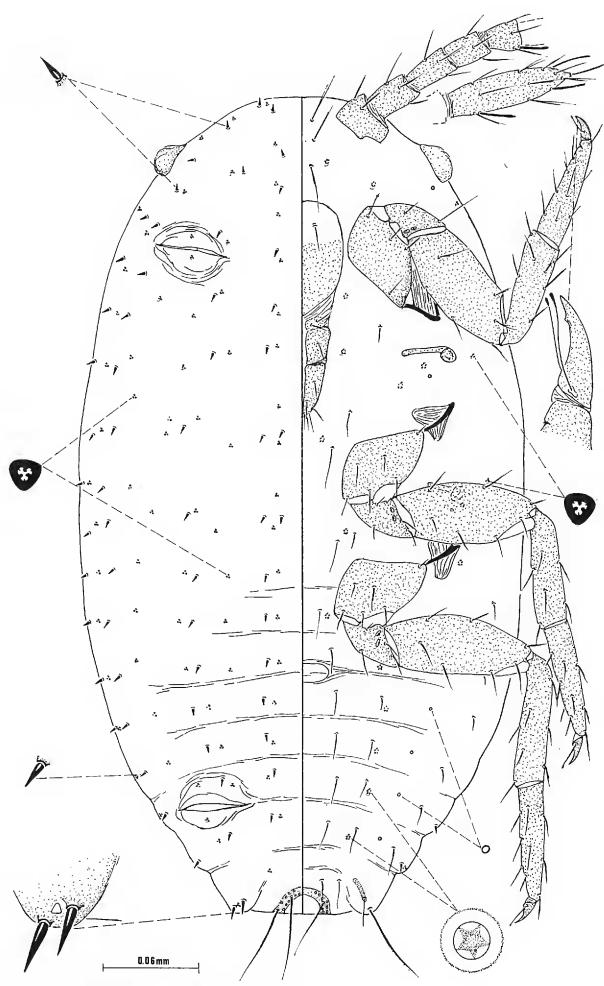


Fig. 5. Heliococcus deserticola, first instar.

Venter with quinquelocular pores normally distributed as in figure 5, sometimes with only 1 pore near mouthparts, occasionally with 3 pores near anterior spiracle and 2 near posterior spiracle. Trilocular pores nearly always present near spiracles, rarely with 1 or 2 present near body margin. Discoidal pores restricted to medio-lateral areas. Crateriform and oral-collar tubular ducts absent. Body setae bristle shaped.

Legs without translucent pores; hind tibia/tarsus ratio 1:1.0-1:1.1 (av. 1:1.1); hind tibia + tarsus length 168-188 (av. 177) μ . Antennae 6-segmented, 225-243 (av. 234) μ long.

Notes.—The above description is based on 8 specimens from 2 localities.

First instar nymphs of North American Heliococcus species have not been described previously. The first instars of Heliococcus deserticola, Phenacoccus dearnessi King (see Miller and Appleby, 1971), and Heterococcus spp. (see Miller, in press) are similar. The first instar of H. deserticola differs from that of P. dearnessi and Heterococcus spp. in having a circulus, conspicuous ostioles, and one size of trilocular pore.

ACKNOWLEDGMENTS

I thank Robert O. Schuster, University of California, Davis, Richard D. Goeden and Donald W. Ricker, University of California, Riverside, for the loan of specimens.

I thank my wife, Judy, for her assistance in typing the drafts of this manuscript and for her comments and criticisms. To Louise M. Russell, Ronald W. Hodges, Robert W. Carlson, and Richard E. White, Systematic Entomology Laboratory, ARS, USDA, I give thanks for their criticisms of this manuscript.

LITERATURE CITED

- BAERENSPRUNG, F. von 1849. Beobachtung über einige einheimische Arten aus der Familie der Coccinen. Ztg. Zool. Zoot. Palaeozool., 1: 165–170, 173–176.
- Balachowsky, A. S. 1953. Sur un *Heliococcus* Sulc nouveau, vivant à 3600 mètres d'altitude dans les Alpes du Dauphiné et du Tyrol. Mitt. Schweiz. Entomol. Ges., 26: 236–240.
- BAZAROV, B. 1963. Two new species of coccids from Tadzhikistan. (In Russian.) Akad. Nauk Tadzhikskoi SSR Dokl., 6: 38-42.
- Borchsenius, N. S. 1941. New pest of mulberry—the central Asiatic cochineal, Heliococcus destructor Borchs. from the Republic of Middle Asia. (In Russian.) Guidebook for Plant Quarantine, 1: 6-7.
- BORCHSENIUS, N. S. 1949. Fauna of USSR. Homoptera, Pseudococcidae. (In Russian.) Akad. Nauk Zool. Inst. (n.s. 38), 7: 1-383.

- Borchsenius, N. S. 1956. Notes on the Coccoidea of Korea. Entomol. Obozr., 35: 671-679.
- Borchsenius, N. S. 1958. Notes on the Coccoidea of China. II. Descriptions of some new species of Pseudococcidae, Aclerdidae and Diaspididae. (In Russian.) Entomol. Obozr., 37: 156–173.
- BORCHSENIUS, N. S. 1962. Notes on the Coccidea of China. XI. New genera and species of Pseudococcidae. (In Russian.) (Akad. Nauk SSSR Zool. Inst. Trudy, 30: 221–244.
- Borchsenius, N. S. and E. M. Tereznikova. 1959. Two new species of mealy bugs of the genus *Heliococcus* Sulc. (In Russian.) Zool. Zhur., 38: 491–494.
- BUEKER, E. D. 1930. Phenacoccus wilmattae Ckll. Can. Entomol., 62: 93-94.
- COCKERELL, T. D. A. 1901. The New Mexico Coccidae of the genus *Ripersia*. Ann. Mag. Nat. Hist. (ser. 7), 8: 51-57.
- Danzig, E. M. 1971. New and little-known species of mealy-bugs from the far east of USSR. (In Russian.) Entomol. Obozr., 50: 366-390.
- Danzig, E. M. 1972. Contribution to the fauna of the white flies and scale insects of Mongolia. (In Russian.) Nasekomye Mongolii, Mongol Orny Shav'zh pp. 325–348.
- EHRHORN, E. M. 1900. New Coccidae from California. Can. Entomol., 32: 311-318.
- Ferris, G. F. 1950. Atlas of the scale insects of North America. Series V. Pseudococcidae (Part I). Stanford Univ. Press, California, 278 pp.
- Ferris, G. F. 1953. Atlas of the scale insects of North America. Volume VI. The Pseudococcidae (Part II). Stanford Univ. Press, California, pp. 279–506.
- Goux, L. 1931. Notes sur les coccides de la France. (3° note). Description d'une espèce nouvelle. Bull. Soc. Entomol. Fr., 1931: 113-118.
- Goux, L. 1934. Notes sur les coccides de la France. (9^e note). Contribution à l'étude du genre *Heliococcus* avec description de deux espèces nouvelles. Bull. Soc. Entomol. Fr., 39: 164–171.
- Goux, L. 1953. Notes sur les coccides de la France (42^{me} note). Etude d'un *Heliococcus* nouveau. Bull. Mens. Soc. Linn. Lyon, 22: 104–109.
- Green, E. E. 1925. Notes on the Coccidae of Guernsey (Channel Islands), with descriptions of some new species. Ann. Mag. Nat. Hist., 16: 516-527.
- Hollinger, A. H. 1917. A new species of *Phenacoccus*. Can. Entomol., 49: 281–284.
- Kanda, S. 1934. Two new genera of Japanese Coccidae. Insect World, 38: 308-313.
- Kanda, S. 1935. On the genus Heliococcus. Annot. Zool. Jap., 15: 70-77.
- Kanda, S. 1959a. Two new species of the Pseudoccidae. Kontyû, 27: 177-180.
- Kanda, S. 1959b. Two new genera and two new species of the Pseudococcidae. Kontyû, 27: 239–243.
- King, G. B. 1902. Two new ants'-nest coccids from Texas. Can. Entomol., 34: 285–286.
- Kuwana, S. I. 1907. Coccidae of Japan, I. A synoptic list of Coccidae of Japan with descriptions of thirteen new species. Imp. Centr. Agric. Exp. Stn. Bull., 1: 177–207.

- Kuwana, S. I. 1917. A check list of the Japanese Coccidae. Yokohama, Japan. 19 pp.
- Laine, F. 1929. Descriptions of new and some notes on old species of Coccidae. Ann. Mag. Nat. Hist., 4: 465-501.
- LINDINGER, L. 1912. Die Schildläuse Europas, Nordafrikas und Vorderasiens, einschlieblich der Azoren, der Kanaren und Madeiras. Ulmer, Stuttgart. 388 pp.
- LOBDELL, G. H. 1930. Twelve new mealybugs from Mississippi. Ann. Entomol. Soc. Amer., 23: 209-236.
- MacGillivray, A. D. 1921. The Coccidae. Scarab Co., Illinois. 502 pp.
- McDaniel, B. 1962. A new species of scale insect from the Rio Grande Valley, Texas. Tex. J. Sci., 14: 323-327.
- McKenzie, H. L. 1960. Taxonomic study of California mealybugs with descriptions of new species. Hilgardia, 29: 681-770.
- McKenzie, H. L. 1964. Fourth taxonomic study of California mealybugs, with additional species from North America, South America, and Japan. Hilgardia, 35: 211–272.
- McKenzie, H. L. 1967. Mealybugs of California with taxonomy, biology, and control of North American species. Univ. California Press, California. 525 pp.
- MILLER, D. R. 1974. A systematic revision of the genus *Heterococcus*, with a diagnosis of the genus *Brevennia*. (in press)
- MILLER, D. R. AND J. E. APPLEBY. 1971. A redescription of *Phenacoccus dearnessi*. Ann. Entomol. Soc. Amer., 64: 1342–1357.
- SANDERS, J. G. 1902. A new *Phenacoccus* on *Platanus occidentalis*. Ohio Nat., 2: 284-286.
- Sulc, K. 1912. *Heliococcus bohemicus* n. gen. n. sp. Cesk. Spolec. Entomol. Casopis., 9: 39–48.
- TAKAHASHI, R. 1930. Observations on the Coccidae of Formosa. Part II. Dept. Agric. Gov. Res. Inst. Formosa, Rpt. no. 48, 45 pp.
- TAKAHASHI, R. 1951. Some mealy bugs from the Malay Peninsula. Entomol. Soc. India (1950), 12: 1–22.
- Ter-Grigorian, M. A. 1967. Two new species of the genus *Heliococcus* Sulc from Armenia. (In Russian.) Dokl. Akad. Nauk Arm. SSR, 44: 134–138.
- THIEM, H. 1930. Die wichtigsten einheimischen Schildlause. Dtsch. Landwirtsch. Presse., 57: 140.
- WILLIAMS, D. J. 1962. The British Pseudococcidae. Bull. Br. Mus. (Nat. Hist.) Entomol., 12: 1-79.